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Abstract: In this review, we discuss an immunological-driven sign termed the Completed 

Self, which is related to a holistic determination of health vs. disease. This sign (human 

plus commensal microbiota) forms the human superorganism. The worldwide emergence 

of an epidemic of chronic diseases has caused increased healthcare costs, increased 

premature mortality and reduced quality of life for a majority of the world’s population. In 

addition, it has raised questions concerning the interactions between humans and their 

environment and potential imbalances. Misregulated inflammation, a host defense-

homeostasis disorder, appears to be a key biomarker connecting a majority of chronic 

diseases. We consider the apparent contributors to this disorder that promote a web of 

interlinked comorbid conditions. Three key events are suggested to play a role: (1) altered 

epigenetic programming (AEP) that may span multiple generations, (2) developmental 

immunotoxicity (DIT), and (3) failure to adequately incorporate commensal microbes as a 

newborn (i.e., the incomplete self). We discuss how these three events can combine to 

determine whether the human superorganism is able to adequately and completely form 

during early childhood. We also discuss how corruption of this event can affect the risk of 

later-life diseases. 
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1. Introduction 

In this review of early-life development and its impact on health vs. disease, we present the tenet 

that the newborn human naturally engages in an immunologically-permitted merger with designated 

parts of the environment. This merger reflects where the infant has been both genetically and 

epigenetically and where the infant will be going in terms of a future health trajectory. The infant-

environment merger also represents a significant biological sign. An effective merger provides for an 

optimized interaction between the environmentally-enhanced infant and the outside world. In contrast, 

corruption of this merger results in a life course of increased risk of disease. Much of this review will 

discuss the nature of this merger as a biological sign and how this key event affects the definition of 

immunologically-defined self, biological integrity and risk of later-life disorder and disease. 

1.1. Signs, Biomarkers, and Health Outcomes 

In the search for one or more signs that represent a crossroads of health vs. disorder and disease, we 

searched for a significant human health risk/benefit and a defining biomarker connected to this health 

outcome. This led us to focus on the health risk of chronic noncommunicable diseases (NCDs). We 

then identified the functional biomarker (i.e., useful frame of reference) most closely affecting chronic 

diseases. In this case, the biomarker that most consistently connects the individual to chronic diseases 

is: misregulated inflammation [1–4]. The importance of misregulated inflammation as a frame of 

reference is further supported by the focus of Davidson and Seneff [5] in their review article appearing 

in this same special issue on biosemiotics. Effectively regulated inflammation in tissues is connected to 

effective host defense and good health, while misregulated inflammation leads to pathology and 

chronic disease. We then searched for one or more signs that connect regulated vs. misregulated 

inflammation to health vs. chronic disease employing immune system-based surveillance as a 

framework, since it has been previously employed for similar purposes [6].  

Our initial focus was on signs connected to proper vs. misregulated inflammation focusing on 

developmental immunotoxicity and epigenetic programming. However, it became apparent that using a 

different frame of reference would produce an even more holistic sign that could connect inflammation 

to chronic diseases. That different frame of reference began with the most basic question: what 

constitutes a fully-formed human individual? The answer is that a fully-formed human is far more than 

what is encoded by the human genome [7]. The fully-formed human contains more microbial DNA 

than actual human DNA  and  is connected to the environment in a way that helps to both define and 

sustain the completed human [8]. Furthermore, alteration of the human microbiome appears to be just 

as likely to result in chronic disease as does alteration of key developing human eukaryotic cells  

(e.g., immune cells) [9]. The paradigm we present is one in which microbial-human symbiotes are the 

basic composite human that is needed for optimized, effective lifelong health. The fundamental sign 
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we seek is likely to be connected to this more complete individual that has also been termed the  

human superorganism [10].  

This review: (1) Justifies the focus on chronic diseases and conditions as the principle out-picturing 

of human disorder. (2) Details the identification of misregulated inflammation as a signal for chronic 

diseases. (3) Introduces and discusses the concept of the Completed Self as a useful sign for health vs. 

chronic illness. (4) Details the process of human-microbial symbiotic formation in the neonate, and  

(5) Considers the impact of altered epigenetic programming (AEP) and developmental immunotoxicity 

(DIT) on formation of the human superorganism and/or expression of the full completed self phenotype. 

1.2. Development of Self Identity from an Immunological Perspective 

One of the first important questions is: who are we immunologically? Historically, there has been a 

perspective in immunology that the human genome encodes us and in order to have integrity and 

fidelity, our immune system must protect us from everything else (i.e., the environment). Specialized 

immune cells such as alveolar macrophages, skin dendritic cells and gastrointestinal-associated lamina 

propria dendritic cells reside at the portals of exposure to the environment for the purpose of sampling 

the environment and helping to protect us from potential danger. But more recently, an expanded view 

of humans that includes a significant microbial super-genome has been proposed as a  

fundamental concept [11].  

Studies suggest that when the immune system only sees and tries to defend what is encoded 

exclusively by the host mammalian genome, it is highly dysfunctional, less effective in maintaining 

homeostasis, and less well prepared to defend the host from the adverse outcomes of pathogenic 

challenge [12–14]. An updated view of self-identity is that a mammalian genome-encoded organism 

completely separate from the environment is disordered, dysfunctional in self-recognition, and more 

likely to have problems protecting the host from serious environmental challenge. 

As pointed out by Oller [6], major histocompatibility complex (MHC) expression is a critical 

component in defining what is self from non-self. We tolerate self and attack, kill, expel or wall off 

what is non-self. Proteins expressed by MHC genes provide a translator system for identifying cells 

and proteins that belong to us from those that are intrusive and/or dangerous. At least for years that is 

what seemed like the essential paradigm for self-identity. But recent research has shown that the 

boundaries of what constitutes self have been dramatically blurred from traditional thinking. The 

reason an immune definition of self is important is that our bodies act to protect or defend the 

boundaries of self. Viruses, pathogenic bacteria, or significantly aberrant cells (e.g., cancer cells) do 

not meet the criteria of self.  

The traditional view indicates that host proteins and cells are the primary targets of self recognition 

such that anything else would be seen as foreign and subject to host defense responses. But this is 

actually not a holistic view of what is immunological self.  

From childhood on, we are reliant on more than a trillion microbes that inhabit our gut, airways, 

skin, oral cavity, conjunctiva, and urogenital tract. These form what has been termed the microbiota 

with genetic components of these microorganisms known as the microbiome. In fact, if the human 

genome was underwhelming in terms of the number of genes identified vs. the number that had been 

expected, our commensal microbes have at least five times that number of genes. In other words, we 
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are carrying far more microbial genes than our own composed DNA. These microbial genes and 

organisms not only carry out their own metabolism, they are specifically tailored to our bodies based 

on our own individual characteristics. Each individual has both a unique fingerprint as well as a 

somewhat unique microbial signature. 

A very minute portion of the human life span is reliant solely on personal, DNA-encoded protein 

products. This time period encompasses a few minutes surrounding birth, after which humans become 

reliant on a combination of personal DNA-encoded proteins as well as those of the microbiota that 

complete the human superorganism. Yet, as incomplete as a newborn infant is and as quickly as they 

must begin acquiring microbiota from their environment, impacts to this biologically-interconnected 

path can begin even before birth.  

1.3. Prenatal Symbiosis  

Prenatal development can be viewed as a symbiotic relationship between mother and fetus. One 

point made by researchers who embrace this view is that the placenta is developed by the mother and 

child in combination and possesses both maternal and fetal parts [15–17]. Additionally, the placenta 

has a certain plasticity, can sense the maternal fetal environment and responds dynamically to a 

changed environment [18]. Oller [6] discussed the fact that via the placenta, the “newly forming 

individual” is afforded with both immunological protection and nutrients as well as safety from 

potentially harmful effects of the mother’s own immune system. 

As described by Martin et al. [19], the fetal immune system develops in a tight symbiotic and 

protected relationship with the mother in utero [20]. While the various cell types and components 

needed for immune function begin to emerge early in development, functional capacity is reduced 

particularly for those immune functions that would jeopardize the pregnancy and development of the 

embryo to full term [21]. This reduction occurs not only in the fetus but also in the mother as specific 

immune strategies protect against improper cell mediated and immune inflammatory responses. 

Carefully orchestrated control of regulated functional levels that are tailored to the stage of the 

pregnancy are needed to ensure fetal survival [22]. 

Several lines of evidence support this synchronized dual restriction of the mother’s and fetus’ 

immune capacities. The fetus develops successfully in what is largely a T helper 2 (Th2) preferred 

environment [23,24]. Th2 skewing of the immune function in the mother causes chronic diseases that 

are Th2 driven (e.g., systemic lupus erythematosus) to be exacerbated while Th1-associated disease 

symptoms (e.g., rheumatoid arthritis) are often lessened [25]. Additionally, women with recurrent 

miscarriages [26] or who experience preterm labor [21] generally fail to down-regulate their Th1 

responses particularly at the maternal-fetal interface. They also have improper control of inflammatory 

cytokine levels at the placental interface [27]. 

1.4. Birth Delivery as the Transition 

Historically, we have viewed birth as the critical transition from sheltered protection to a largely 

complete individual. If Th1 dampening and controlled inflammations are needed to immunologically 

maintain the symbiotic mother-fetus relationship, then parturition has different requirements. In effect, 

it is a dissociation of the symbiosis. In fact, there is evidence in animal models that macrophage 
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activation and an inflammation-like process is needed to initiate the events surrounding birth [28,29]. 

Shynlova et al. [30] described how proinflammatory cytokine-activated immune cells infiltrate the 

uterus and initiate labor. 

Certainly, maturation must continue after birth and does for many physiological systems until at or 

near adulthood [31−33]. But having a fully-formed yet immature organism is completely different 

from having an organism that may be born incomplete and needs to add external components to be 

completed. It is this latter concept that is probably closer to reality given what we now know about 

microbial symbiosis. We will argue precisely the view that our microbiome is needed to complete us. 

2. Results  

2.1. The Completed Self Concept 

Several investigators have suggested that it is more accurate and potentially useful to think of 

mammals as “superorganisms” composed of both mammalian and microbial cells, which are 

exquisitely interlinked to affect health [34,35]. No longer does our human-driven core constitute our 

Completed Self. Instead, as stated by Sleator [36], humans are more likely to be “a collective of human 

and microbial cells all working for the collective.” In actuality, we are multiple organisms when we 

exist as individuals free of our mother’s womb. Zhu et al. [37] termed the human gut microbiome as 

the “second human genome” and pointed to the fact that microbial genes outnumber human genes by 

150 fold. Recently, Murdoch and Detsky [38] suggested healthcare needs to shift away from the 

traditional focus on just human physiology to a focus on the human superorganism. While the immune 

system is known to play the critical role of homeostasis in tissues, Eberl [39] argued that its principle 

role is not necessarily as a killer but as a homeostatic regulator of the human superorganism.  

 In our view of the Completed Self, we will argue that this is a paramount sign or signal determining 

health vs. disease. The focus of this paper is on chronic diseases as the most significant category of 

diseases. But, if self-completion is a key sign, there are many prenatal and perinatal factors that affect 

whether self-completion can occur successfully in the infant. These factors are illustrated in Figure 1 

along with a developmental timeline. 

2.2. Sources of Microbiota for Infant Self-Completion 

Introduction to a useful environment is among the most important considerations for the newborn, 

and the perinatal period is the most critical for acquisition of commensal microbes and completion of 

the self. While most of the attention is centered on birth and the neonatal period of microbial 

colonization, some investigators suggest that attention should be paid to maternal microbes including 

those at the maternal-fetal interface [40]. For example, differential prenatal fetal T cell priming and 

newborn levels of the cytokine interleukin-12 (IL-12) have been reported based on whether 

Lactobacillus had colonized the maternal vagina [41]. Therefore, the maternal microbiome is a 

consideration for the baby’s immune system before, during and after birth.  

The newborn emerges from the womb essentially sterile. Microbial colonization of the infant’s gut, 

skin, lungs, conjunctiva and urogenital tract begins almost immediately upon birth. Factors that affect 
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the infant’s microbiota colonization are:  mode of delivery, feeding regime, maternal diet/weight, 

probiotic and prebiotic use and antibiotic exposure pre-, peri- and post-natally [42].  

Figure 1. A timeline for formation of the Completed Self is depicted. Transgenerational 

epigenetics (via prior generations) and perinatal developmental immune processes combine 

with neonatal microbial colonization to establish the parameters of the human-microbiome 

superorganism. There are specific developmental windows for each contributing factor that 

determine whether the Completed Self is appropriately formed in the young child.  

 

The baby’s direct contact with the mother and the environment provides microbial exposure for 

colonization. Additionally, breast milk is an important source of gut microbiota for the infant. 

Urbaniak et al. [43] indicate that breast milk provides the infant with a significant amount and 

diversity of microbes that are lacking in formulas. Even probiotic supplemented formulas lack the 

diversity of bacteria that is provided to the infant via breast milk [43]. Differences in the microbial 

composition of breast milk have been reported. As an example, breast milk from obese mothers was 

found to be less diverse in bacteria than breast milk from non-obese women [44]. 

Colonization of the infant skin microbiota is also important in reducing the risk of later life 

diseases. Nagata et al. [45] found that the newborn’s skin is populated with microbes transmitted 

directly from the mother’s skin. Most of the transitions among commensal skin fungus appear to occur 

within 30 days of birth [45]. In contrast, Capone et al. [46] reported that most of the skin microbiota 

colonization occurs over a longer period during the infant’s first year of life and the bacteria are 

distributed in a site specific manner. 

Comparatively less research has gone into the colonization of conjunctiva, and collection 

methodologies to examine diversity can be challenging. Thus far, results suggest that the normal, 
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healthy conjunctiva also have a significant diversity of different microbes represented [47]. 

Information on critical developmental windows for establishment of the infant’s microbiome is 

generally lacking to date. However, studies have been performed on potentially pathogenic microbes 

detected in premature neonates spending significant time in the neonatal intensive care unit [48]. 

As with conjunctiva, complete characterization of the normal vs. disrupted urogenital microbiota 

has lagged behind that of the gut, and critical windows for neonatal colonization have yet to be 

defined. Analysis of the healthy female genital tract has proved to be a challenge since present results 

suggest there is both significant microbe diversity and site specificity [49].  

2.3. Critical Timing for Self-Completion 

Ironically, the birth process itself may be useful for seeding commensal microbes and helping to 

drive immune maturation and effective balance. Several studies have shown that birth delivery mode 

affects neonatal immune balance. Shortly after birth, vaginally delivered newborns have enhanced 

colonization of certain gut bacteria (e.g., Bifidobacteria sp.)  [50] and a more mature and effectively 

balanced (Th1 vs. Th2) immune system [51] than Caesarean-delivered babies.  

Early-life introduction of commensal microbes appears to be crucial and difficult to correct later in 

life. Significantly, there appears to be a critical postnatal window during which bacterial colonization 

needs to occur to achieve effective mucosal immunity and avoid persistent problems in the adult. In a 

study in piglets, Mulder et al. [52] found that a hard-wiring of both adult gut microbiota and adult 

mucosal immunity occurred based on microbial exposures taking place during the first few days of 

life. They concluded that microbial exposure throughout early life is an important risk factor in the 

development of immune diseases in children. 

2.4. Health vs. Disease: the Epidemic of Chronic Diseases and Conditions 

In the present examination of signs that are linked to health vs. disease, our focus is on chronic 

diseases as the most significant category to represent human disease. One of the remarkable shifts in 

health during the latter portion of the 20th century has been the relative decline in mortality due to 

infectious diseases and its replacement with increased mortality due to non-communicable chronic 

diseases [53]. The Harvard School of Public Health and the World Economic Forum estimated that 

diseases such as diabetes, chronic respiratory diseases, and heart disease presently account for 63% of 

deaths world-wide and are projected to cost 48% of the global gross domestic product by the year  

2030 [54]. The toll of chronic diseases is measured not only in premature death but also in seriously-

challenged lives. Many adverse outcomes involve debilitating conditions that result in rising healthcare 

costs, lost wages, reduced quality of life and increased burdens for families and communities. In fact, 

chronic diseases have been suggested to pose “the single, greatest sustained threat to the stability of 

heath care systems worldwide” [55].  

Rising prevalence of chronic diseases is a priority concern in the United States [56], Europe [57], 

Asia [58], Australia [59], Africa [60], and South America [61]. The situation has become sufficiently 

serious that for only the second time in its history, the General Assembly of the United Nations 

brought a health topic to the floor for debate. The first instance concerned the topic of HIV/AIDS, 

which was discussed over a decade ago. In 2011, the topic was the chronic disease epidemic [62].  
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According to Mayes and Oliver [63], the transition from acute, communicable conditions among 

humans to chronic, noncommunicable conditions represents a massive, gradually developing, global 

crisis. There is concern that governments have been slow to address prevention of chronic diseases in 

keeping with the seriousness of the economic and societal impact. In fact, Mayes and Oliver [63] argue 

that several structural impediments limit much-needed responses. Among these is the fact that public 

health initiatives addressing chronic diseases have benefits that are dispersed and delayed. 

Additionally, when compared with medical treatments designed to manage symptoms of a disease, 

efforts to prevent something bad from happening may appear to be mundane, with both the prevention 

practitioners and their efforts remaining largely invisible [64]. Mayes and Oliver [63] suggested that a 

paradigm shift is needed in which “health in all policies” takes precedence. 

In a recent article on chronic diseases, Freudenberg and Olden [65] posed the following challenge: 

“To lower the incidence of chronic diseases and thus the costs they impose on our society and health 

care system will require addressing the deeper causes of the increase in recent decades.” Table 1 shows 

some examples of health care cost estimates for pediatric chronic diseases.  

Table 1. Healthcare and Other Costs Associated with Chronic Diseases and Conditions in Children. 

Entryway 
Disease or 
Condition 

Population studied Period 
of study 

Category of costs Per annum 
amount per 

patient 

Reference 

Asthma School age children in 
a 1996 Medical 
Expenditure Panel 
Survey 

1996 Total economic 
impact, medical and 
lost parental wages 

$791 [146] 

Asthma 
(difficult to 
control) 

Children 6-12 years of 
age with difficult to 
control asthma from 
several US sites 

2001–
2004 

Total asthma costs: 
medications, physician 
visits, hospital visits; 
lost work/school days 

$7,846 [147] 

Autism 
spectrum 
disorders 

US: Medicaid database 
from 42 states 

2003 Total health care 
expenditures in 
Medicaid per child per 
annum 

$22,079 [148] 

Childhood 
chronic kidney 
disease 

Children from Canada 
(British Columbia and 
Yukon) 

2009 Annual 
pharmaceutical cost 

$1,800 [149] 

Pediatric 
Crohn’s 
disease 

Pediatric patients in 
Canterbury, New 
Zealand 

2010-
2011 

Total (direct and 
indirect) cost per 
person per annum 

$14,375 
NZD 

[150] 

Pediatric  
food allergies 

Children 0–18 years 
of age as one 
categories in the 
study 
 

2007 Mean direct medical 
cost per child per 
annum 

$3,635 [151] 
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Table 1. Cont. 

Entryway 
Disease or 
Condition 

Population studied Period 
of study 

Category of costs Per annum 
amount per 

patient 

Reference 

Kawasaki  
disease 

Across US 1997–
1999 

Median hospitalization 
cost 

$6,169 [152] 

Pediatric  
arthritis 

2nd Children’s Hospital 
at Berlin-Buch cohort 

1998–
2000 

Mean cost per patient 
per annum 

3,500 Euros [153] 

Type 1  
diabetes 

Texas 2004–
2005 

Median direct costs 
per person per annum 

$4,730 [154] 

Apart from the impact on quality of life, the per annum toll that begins in childhood and the 

increasing prevalence of these diseases and conditions provide the basis for more effective prevention. 

In the present review, we argue that three areas of priority could help to address the human burden of 

chronic diseases: (1) avoidance of adverse epigenetic alterations including those with stable 

transgenerational inheritance, (2) improved protection of the developing immune system from 

environmental insult, and (3) strategies to facilitate microbial-human symbiosis in childhood and 

formation of the Completed Self. 

2.5. Chronic Diseases Are Connected as Interlinked Patterns 

While some chronic diseases arise as multi-organ or systemic diseases (e.g., systemic lupus 

erythematosus (SLE)), the majority are directed toward a specific organ, tissue, or physiological 

system (e.g., asthma, inflammatory bowel disease). From a morphogenic viewpoint, cardiovascular 

diseases were seen as distinct from chronic kidney disease or hepatic steatosis, psoriasis had no 

bearing on rheumatoid arthritis, and gastrointestinal allergy or autoimmune thyroiditis had no impact 

on neurological problems. Medical coding of chronic diseases has had a similar effect in which 

conditions that may involve a common dysfunctional basis (e.g., autoimmunity) are viewed more by 

their organ or tissue specific site than by an actual biological categorization [66]. As a result, 

rheumatoid arthritis, psoriasis, inflammatory bowel disease and type 1 diabetes each may be treated by 

different specialists. But in fact, these chronic diseases may be more related than previously suspected. 

Recent findings indicate that these supposedly disparate chronic diseases that target different tissues are 

interlinked both in underlying biological dysfunction as well as in potential comorbid diseases risks [67]. 

The initial concept of interlinked patterns of diseases or conditions did not begin with a 

consideration of immune dysfunction based diseases. Instead, it was a comparatively narrow category 

of male reproductive conditions followed by a larger category of metabolic-dysfunctions that 

suggested the benefits of examining the landscape of chronic diseases and conditions from a more 

holistic perspective. One of the initial characterizations linking chronic diseases and conditions keyed 

to early life environmental conditions was in the area of testicular dysgenesis syndrome [68, 69]. With 

this syndrome, testicular germ cell cancer, cryptorchidism and some cases of hypospadias and male 

infertility have been linked with impaired development of the testis. This was followed by the 

conceptual framework of metabolic syndrome [70] where such interlinked conditions as insulin 

resistance, diabetes, and hypertension were seen as forming a matrix that represented an integrated 
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state of dysfunction. With metabolic syndrome, the interlinked conditions extended beyond a single 

tissue or organ affecting multiple symptoms as well as risk of multiple diseases. 

In a series of papers, Dietert and collaborators applied the concepts of interlinked conditions to the 

identification of larger patterns of immune dysfunction-based, inflammation-driven, chronic diseases. 

The disease terrain that is interconnected via immune dysfunction and inflammatory misregulation is 

remarkably large encompassing many, if not most, chronic diseases and conditions [71−73]. This 

breadth of biological interconnectivity becomes evident with the realization that numerous chronic 

diseases have comorbidities that include one or more of the following: depression, sensory loss 

(including eyesight, hearing and/or sense of smell), frailty, and sleep disorders/problems [67]. 

Recently, specific risk of cancer was included among the immune dysfunction-inflammation based 

patterns [66]. In fact the causative and risk-based linkages among chronic diseases are so extensive 

that in many ways it can be useful to consider them as one or more units of conditions rather than 

myriad diseases.  

2.6. Chronic Disease Patterns Begin Early in Life 

The foundation for risk of chronic disease begins in early life [74–76]. Studies from the past two 

decades have demonstrated that the most critical windows for exposures to chemicals and drugs and 

toxicological risk of chronic diseases are the prenatal, neonatal and juvenile periods of development. 

Much of the original focus of developmental environment and adverse health outcomes was placed on 

prenatal conditions and risk of adult-onset diseases. For example, the developmental basis of adult 

health and disease became established through the “Barker Hypothesis” in which prenatal 

programming was linked with adult offspring cardiovascular disease [77,78]. Since the original 

observations, prenatal environmental programming, including low birth weight, have been associated 

with an elevated risk of such conditions as hypertension [79], insulin resistance [80], diabetes [81], 

atherosclerosis [82], and chronic kidney disease [83] again primarily focused on adult disease.  

However, two key findings extend the prenatal programming-adult relationship to a much broader 

terrain. First, far more environmental factors are known to affect the risk of disease in the offspring 

than just maternal undernutrition. In fact myriad environmental factors ranging from specific dietary 

factors to drugs, chemicals, infections, and physical and psychological stressors are known to operate 

via early development to affect risk of later life disease. Second, it is clear that the impact of fetal 

programming occurs in children. Risk of prominent childhood-onset diseases is equally susceptible to 

fetal programming as is risk of more geriatric-onset conditions. Additionally, the fetal-derived bases of 

diseases like atherosclerosis are already present in children even if disease diagnosis may not occur 

until adulthood [84]. For these reasons, we will argue that the patterns of chronic diseases are already 

in place in children following early-life problematic exposures to chemicals and/or drugs. 

A striking finding is that over half of US children have some form of chronic disease or condition 

and/or developmental delay. A 2011 study by Bethell et al. [85] based on 2007 data, found that 43% of 

US children had at least one of 20 designated chronic conditions. When obesity and developmental 

delays were included as additional inflammation-affected chronic conditions, that percentage was 

elevated to 54%. Almost one fifth of all children had conditions resulting in special health care needs.  
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Cost consideration for chronic diseases come in several forms including direct medical care costs, 

prescription drug costs, and lost income. The effect of adding comorbidities with increased aging is 

that more care and prescription drugs are likely to be required. Ironically, despite the shorter lifespan 

that can accompany chronic diseases, lifetime drug expenditures can exceed those of longer lived 

healthier populations. For example, Rappange et al. [86] found that lifetime drug costs among the 

obese were higher than those of a healthier-living cohort despite the former group having a shorter life 

expectancy. Asche et al. [87] compared the all-cause health care costs of newly diagnosed  

patients (1,411) with multiple sclerosis (MS) against a “healthy” comparison group (7,055) for a  

12-month period. They found that the MS group costs were significantly elevated over those of the 

comparison group ($18, 829 vs. $4,028).  

2.7. Misregulated Inflammation Is the Root of Most Chronic Diseases 

Chronic inflammation as a result of unresolved acute inflammation has been suggested as a 

unifying basis for most, if not all, chronic diseases of today. It is the disorder that best predicts chronic 

diseases [2,88−90]. In fact, most chronic diseases are dependent upon chronic inflammation as a key 

factor in their development and/or maintenance [91]. Additionally, Prasad et al. [92] argue that all risk 

factors of chronic diseases up-regulate inflammation. The problem is so pervasive and extensive that 

Aller et al. [93] suggested that inflammation problems have the potential to exert an evolutionary impact. 

Gene-environment interactions are important in chronic inflammatory conditions [94], and this 

complements the idea that hypersusceptible subpopulations are likely to exist in which inflammatory 

dysfunction is more likely to occur under a set of early-life environmental conditions. Table 2 

emphasizes the significance of immune dysfunction and misregulated inflammation to chronic diseases 

by illustrating suggested biomarkers associated with each of several different types of chronic diseases. 

The common occurrence of innate immune markers associated with inflammation is striking.  

Chronic diseases linked with improper inflammation include: allergic and autoimmune conditions, 

various behavior disorders, sensory loss, sleep problems, frailty, depression [67], Parkinson's disease [95], 

as well as cardiovascular diseases, type 2 diabetes, chronic kidney disease, Alzheimer's disease and 

cancer [96]. In the latter case, cancer has emerged as one of the prime end-stage comorbidities of 

immune dysfunction and chronic inflammation. Immune problems resulting in chronic inflammation 

create an environment that elevates the risk of development and/or promotion of cancer [97,98]. This is 

consistent with the observed pattern that elevated cancer risk is associated with the tissue-specific 

targeting of chronic diseases involving inflamed tissues (e.g., lung cancer for asthma, skin cancer for 

psoriasis, and G.I. tract cancer for inflammatory bowel disease) [66].  

It has been suggested that chronic low level inflammation is involved with most forms of heart 

disease [99]. Atherosclerosis represents a prime example of an immune-mediated, chronic 

inflammatory disorder [100]. With atherosclerosis there is a progression through a timeline during which 

the transition from acute to chronic (or unresolved) inflammation results in inflammation-driven 

hypertension [101].  
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Table 2. Suggested Immune and/or Inflammatory Biomarkers of Chronic Diseases and Conditions. 

Disease/condition Suggested biomarkers Reference(s) 

Alzheimer’s disease Microglia and astrocyte proinflammatory cytokines IL-1, IL-6, 
TNF-alpha with inflammasome activation; Low M-CSF production 
by macrophages containing amyloid-B deposits; Altered TLR 
regulation 

[155−157] 

Asthma and 
respiratory allergies 

Altered signaling and/or levels of Toll-like receptors 2, 4, and 7; 
Increased IgE and/or IL-4 levels; Eosinophilic infiltration of tissues; 
Production of specific microRNAs 

[158−160] 

Atherosclerosis TLR 4, MyD88, and the inflammasome activation; Elevation of IL-
1 and IL-18, C-reactive protein; Lipoprotein-associated 
phospholipase A2 

[161,162] 

Autism Increased proinflammatory cytokines and abnormal innate immune 
responses 

[163] 

Chronic obstructive 
pulmonary disease 

Improper neutrophillic inflammation; Excessive ROS production; 
Excessive Th1 and Th17 activity; Impeded immune repair 

[164,165] 

Depression Increased proinflammatory cytokines IL-1, IL-6, TNF-alpha; 
Elevated cortisol 

[166,167] 

Food allergies Decline in TGF-beta producing T cells in the gut [168,169] 
Grave’s disease Dendritic cell polarization; impaired CD4+CD25+ regulatory T cell 

capacity 
[170] 

Hashimoto’s 
thyroiditis 

Decreased CD4+CD152+ T cells [171] 

Myalgic 
encephalomyelitis 
(Chronic Fatigue 
Syndrome) 

Elevated proinflammatory cytokines; Elevated serum neopterin and 
PMN-elastase; blunted T cell memory 

[172−174] 

Multiple sclerosis CD46 regulation; Activated microglial production of proinflammatory 
cytokines; Dysregulated Treg/Th17axis; Neuropilin-1 regulation 

[156,175−177]

Osteoporosis Urinary ratio of native (alpha) to isomerized (beta) CTX; 
Fragments of interalpha-trypsin-inhibitor heavy chain H4 precursor 
(ITIH4) 

[178,179] 

Parkinson’s disease Change in olfaction; Depression [180] 
Psoriasis IL-1F6 as well as upregulation of TNF-alpha, IL-17A, and IL-23 [181] 
Rheumatoid 
arthritis 

Macrophage overproduction of IL-1, IL-6 and TNF-alpha; CD4+ 
Th1- and Th17-driven inflammation; inflammasome activation; 
Autoantibodies to Fc portion of host immunoglobulins  

 
[182−184] 

Sarcoidosis A cytokine cascade of IL-1, IL-2, IL-6, IL-8, IL-12, IL-18, IFN-
gamma, and TNF-alpha promotes the recruitment, activation, and 
proliferation of mononuclear cells and a Th1-driven granulomatous 
response; Overabundance of activated CD4+ T cells; Altered 
dendritic cell maturation 

[164,185] 
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Table 2. Cont 

Disease/condition Suggested biomarkers Reference(s) 

Sjogren syndrome Enhanced production of type 1 interferons by dendritic and other 
cells; Increased oxidative stress; Autoantibodies against the RNA-
binding proteins SSA/SSB/RNP 

[186,187] 

Sleep disorders IL-6 levels in relation to other inflammation-regulating cytokines [188] 
Systemic sclerosis CD70 overexpression; Endothelial adhesion molecules; Soluble 

TNF-alpha receptor; Altered pulmonary surfactant production  
[189–191] 

Type 1 diabetes Macrophage overproduction of inflammatory cytokines and CD4+ 
Th1 subpopulation driven inflammation 

[192] 

A similar relationship exists between inflammation and metabolic disorders. Osborn and Olefsky [102] 

argue that chronic tissue inflammation mediated by macrophages is a critical link between the immune 

system and metabolic-based chronic diseases. Obesity is integrally linked with inflammation and 

altered immune status [90]. Age-related adiposity has been linked with chronic inflammation and, in 

particular, shifts in T cell and inflammatory macrophage populations in adipose tissue [103]. Even 

later, end-stage types of diseases such as chronic kidney disease are also predicted by earlier markers 

of inflammation [104,105].  

Not surprisingly, drugs designed to promote resolution of acute inflammation appear to show 

promise against multiple different chronic diseases. For example, resolvins are  a category of bioactive 

autacoids of enzymatically converted omega-3 polyunsaturated fatty acids. Because of their capacity to 

resolve misregulated inflammation, they are a promising drug candidate to treat a variety of  

chronic diseases [106].  

Improper inflammation in early life is a major factor in later life chronic diseases [107] and 

imbalances of innate immune cell populations have been suggested as a marker associated across many 

chronic diseases [108]. This is also telling since Netzer et al. [109] suggested that innate immune-

promoted reactive oxygen species production may be key to a loss of translational fidelity. The 

researchers proposed that loss of this fidelity and capacity to produce a wider spectrum of modified 

proteins may be an adaptive response of mammalian cells to undue stress. 

2.8. Human Avoidance of Misregulated Inflammation and Chronic Diseases 

If chronic diseases are a primary adverse health outcome of dysfunction that should be avoided, 

then the question becomes what is the cardinal sign that could be used to distinguish health from a life 

course filled with chronic diseases? We present the tenet that fulfillment of the human superorganism 

(human genome + microbiome) is pivotal for health. The detailed summation will vary from individual 

to individual. But it is clear that the human superorganism needs to form efficiently, effectively, and 

completely in the infant. As follows, we discuss this concept under the rubric of what we term: the 

completed self. Additionally, we consider the three major components that determine whether the 

immunologically-defined Completed Self can form: (1) useful epigenetic programming, (2) effective 

developmental immune maturation, and (3) complete microbiota colonization. The relationships 

among these three factors, misregulated inflammation, the Completed Self and interlinked patterns of 

comorbid chronic diseases are depicted in Figure 2. Significantly, Figure 1 show that these processes 
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occur during specific critical windows of development, and failure of critical maturational steps during 

these windows can compromise formation of the Completed Self and increase health risks across a lifetime. 

Figure 2. Early life interactions that disrupt formation of the Completed Self are suggested 

to be as a primary contributor to misregulated inflammation and risk of later-life chronic 

diseases. Reported comorbidities among selected chronic diseases and conditions are 

shown in this figure and are represented by the interconnecting lines among diseases. 

These comorbidities are extensive illustrating the extent to which much of human disease 

is interconnected and promoted by misregulated inflammation. For example, tissue-specific 

cancer is a later-life comorbidity of asthma (lung cancer), inflammatory bowel disease 

(gastrointestinal cancer) and psoriasis (skin cancer). Cardiovascular disease (e.g., 

atherosclerosis), depression, and frailty are common later-life comobidities. It is suggested 

that environmental interference with human superorganism formation corrupts a biological 

sign for later-life health. 

 

2.9. Three Key Factors That Affect Our Capacity for Self-Completion 

Three major processes and, in turn developmentally-timed vulnerabilities, exist relative to 

formation of the Completed Self. Figure 2 illustrates the risk to formation of the Completed Self that is 

associated with AEP, DIT and/or altered neonatal microbial colonization. 
  



Entropy 2012, 14 2050 

 

 

2.9.1. Altered Epigenetic Programming (AEP) Across Generations 

One key factor that can lead to misregulated inflammation and elevated risk of chronic diseases is 

AEP. Environmentally-induced epigenetic programming may reflect in utero or neonatal 

environmental insults similar to DIT (discussed in the following sections) or alternatively, it may be 

expressed across several generations and not reflect direct exposure and immune disruption. 

Regardless of the generations exposed and affected, an alteration in gene expression patterns that 

produces inappropriate responses to host challenge and misregulated inflammation appears likely to 

elevate the risk of one or more chronic diseases.  

Several examples have been reported in the literature with a focus on inflammation-associated 

cancer. The gene, cytidine deaminase, and its activation through epigenetic alterations cause alterations 

in immunoglobulins via changes in somatic events. Epigenetic activation of this gene has been linked 

with chronic inflammation and cancer [110]. Chiba et al. [111] discussed potential gene targets of EP 

that have been associated with inflammation-associated development of digestive tract cancers. 

Likewise, Rau et al. [112] identified methylation of the gene caudal homeobox factor 1 as a pathway 

leading to inflammation and intestinal metaplasia in humans. In the liver, Nishida and Goel [113] have 

reported that consistent gene methylation patterns and histone modification can be associated  

with hepatocarcinoma. 

Beyond cancer, Michael Skinner and colleagues [114] reported evidence that several classes of 

environmental toxicants produce F3 generation inherited DNA methylation patterns that were 

connected to a condition in rats modeling human polycystic ovary disease. This study provided a proof 

of concept for epigenetic transgenerational induction of chronic diseases. Diseases associated with 

several different tissues are connected to epigenetic changes. For example, a change in the cytokine 

gene producing interleukin-13 (IL-13) appears to be associated with allergic airway inflammation and 

remodeling [115]. Epigenetic reduction of histone deactylase 2 and its activity has been connected to 

oxidative stress, lung inflammation and increased risk of chronic obstructive pulmonary disease 

(COPD) [116]. Ospelt et al. [117] proposed that epigenetically produced inflammatory memory may 

be the key to risk of rheumatoid arthritis (RA). These authors suggested that a stable activation of 

synovial fibroblasts may provide the key step leading to improper inflammation and RA. Taken 

together, these studies suggest that epigenetic alteration affecting regulation of inflammation is likely 

to contribute to multigenerational risk of chronic diseases. 

2.9.2. Developmental Immunotoxicity (DIT) 

Influence of the environment on the developing immune system, indirectly via the mother during 

gestation or directly on the child, represents the second process that can significantly affect formation 

of the Completed Self and risk of chronic diseases. The developing immune system is vulnerable to a 

variety of environmental modulating agents that collectively have been discussed under the rubric of 

developmental immunotoxicity (DIT) [118]. The agents can include environmental chemicals, drugs, 

diet, pathogens, medical devices, and physical and psychological conditions including maternal and 

fetal stress [118].  
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When toxicants have been compared across ages, the developing immune system has been shown to 

be more sensitive than that of the fully-matured adult [119,120]. Increased sensitivity of the immune 

system in early life can take several forms: (1) lower exposure doses are required to induce 

immunotoxicity, (2) more persistent adverse immune effects exist across a lifetime, (3) a broader 

spectrum of adverse effects are produced and (4) an increased vulnerability to later-life, 

environmentally-triggered immunotoxicity becomes established. Age-based, increased vulnerability 

for the immune system is not the only concern. Depending upon the environmental factors involved 

and the parameters measured, developmental immune effects can represent the most sensitive 

measures of adverse outcomes [121]. A recent example in which DIT helped in the determination of 

safe levels can be found in the US EPA’s IRIS assessment of the widespread contaminant, 

trichloroethylene (TCE) [122]. 

 Importantly, DIT has the capacity to interfere with later-life, positive environmental factors and 

their role in continued maturation of the infant’s immune system [66]. This nullification effect of DIT 

for subsequent childhood environment-microbial enrichment has been shown in the case of risk of 

allergy. PCB exposure nullifies the otherwise beneficial effects of breastfeeding for risk of allergic 

sensitization [123] and pesticide exposure nullifies the benefits of growing up on a farm relative to risk 

of asthma [124]. As can occur with AEP, DIT can interfere with immune maturation and cause the 

blunting of otherwise beneficial effects of the microbiota. Theoretically, this can occur in two ways:  

(1) via direct interference with acceptance of commensal microbes as self or (2) via the limited 

capacity of the DIT-damaged neonatal immune system to respond to microbial pattern recognition 

signals for continued immune maturation. The end result is that DIT can block formation of the 

Completed Self or prevent us from fully benefitting from the presence of our microbial partners. 

The risk factors for DIT include environmental chemicals and drugs (e.g., environmental tobacco 

smoke, lead, mercury, polychlorinated biphenyls, paracetamol), maternal and neonatal diet, maternal 

and childhood infections, neonatal microbial exposures, birth delivery mode, and maternal and 

neonatal stress [118,125]. The determination of whether a specific environmental risk factor produces 

biologically-significant DIT is based on the genetics of the individual, prior exposure history, the 

exposure dose, the duration of exposure, the critical developmental windows of exposure, and  

gender [126,127]. A key point is that qualitatively different immunotoxic outcomes can occur 

depending only on the developmental timing of exposure. The implications are that environmental 

health risks for the immune system are both age- and gender specific and need to be treated as such in 

terms of safety evaluation and prevention. 

2.9.2.1. DIT and Misregulated Inflammation 

Recently, the role of DIT, innate immune cell development and risk of inappropriate inflammation 

were reviewed by Leifer and Dietert [128]. Major developmental immunotoxicants such as the heavy 

metals, lead, mercury, and cadmium and dioxin are known to impact innate immune cell responses to 

challenge and to promote inappropriate inflammatory responses leading to tissue damage. For 

example, Kasten-Jolly et al. [129] found that developmental exposure of mice to lead targeted changes 

in innate immune cell gene expression as a major outcome. They further argued that the multi-system 

adverse effects following developmental lead exposure could be related to systemic inflammation. 
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Hogaboam et al. [130] reported that developmental exposure of mice to 2,3,7,8-tetrachloro-dibenzo-p-

dioxin causes the offspring to mount an excessive neutrophil-driven inflammatory response in the lung 

in response to influenza challenge. These types of toxicant-induced misregulation of inflammation are 

likely contributors to chronic diseases. Finally, Dietert [131] reviewed the widespread capacity of 

endocrine disrupting chemicals to disrupt immune maturation and produce misregulated inflammation 

following early life exposures. 

2.9.2.2. DIT and Infectious Agents Can Combined to Initiate Chronic Diseases 

Among the early-life environmental risk factors for immune-based disease, some of these factors 

such as environmental toxicants appear to cause immune dysfunction and disease. In contrast, other 

environmental risk factors such as infectious agents (e.g., respiratory viruses) may act as triggers of 

disease rather than necessarily serving as causes. For example, certain infections in children can 

produce tissue damaging immune responses from an already maturationally-dysfunctional childhood 

immune system [132].  

In addition to allergic and autoimmune diseases, neurodegenerative diseases appear to have a 

similar association to infections. Deleidi and Isacson [133] suggested that triggers of inflammation 

such as viral infections are critical in the initiation of many neurodegenerative chronic diseases. These 

authors stress the importance of activation of microglia and production of proinflammatory cytokines 

prior to the development of Huntington’s disease, Alzheimer’s disease, and Parkinson’s disease. 

2.9.3. Altered Neonatal Microbial Colonization 

At birth most mammals, including humans, have yet to encounter microorganisms. That will change 

rapidly and the subsequent interactions define the playing field for what is self and then tolerated vs. 

what is a danger and needing to be attacked. As described by Vassallo and Walker [134], colonization of 

the infant’s gut with microbes is a critical step in microbe-host programming that results in a balanced 

mutualism, which can greatly impact the later-life health and risk of disease in the individual. 

Comparison of the number of microbial cells to mammalian cells in humans is staggering with microbes 

outnumbering the latter by at least a magnitude [135]. Our commensal microbes are not an after-thought. 

Once we are separated from our mother’s body, we become significantly microbial. These microbes also 

play a critical role in necessary further maturation and programming of the developing immune  

system [136]. Martin et al. [19] stressed that while environmental microbes had been viewed as 

significant in postnatal immune maturation, it is more likely that commensal microorganisms (the 

microbiota) are the primary drivers of immune maturation. In his review, Oller [6] discussed the 

importance of the gut microbiota and, in particular, how an individual’s own genetic background can 

shape the composition of the microbiota. This is a very significant point in that different individuals are 

likely to differ in the exact microbial partners that help form the Completed Self. 
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3. Discussion 

3.1. DIT, Missing Microbes, and Future Health 

Beyond this early-life co-dependency, perinatal immune status and microbiota status fit together to 

ultimately affect the risk of chronic inflammation and later-life disease [137]. De Palma et al. [138] 

described studies in which the specific microbiota composition of the gut affected dendritic cell 

maturation and were shown to either lead to normal and effective functional outcomes or alternatively, 

to immune dysfunction. Substitution of probiotic Bifidobacterium with enterobacteria was shown to 

drive dendritic cell maturation toward a celiac disease-like inflammatory phenotype. 

There are similarities in outcomes between DIT and impaired microbiota formation. These can be 

seen in the lack of effective immune homeostasis and in an elevated risk of specific immune-

inflammation-driven chronic diseases. For example, a reduced diversity of gut microbiota in an infant 

has been reported to elevate the risk of allergic disease [139]. Remarkably, similar outcomes have been 

reported for DIT-associated perinatal exposures to marine pollutants [123], paracetamol [140], and not 

surprisingly, antibiotics [141]. However, in the case of perinatal exposure to antibiotics it is unclear 

whether the developmental target for later-life disorder and disease is the microbiome, the developing 

immune system, or both. 

Abt et al. [142] examined the effects of antibiotic depletion of commensal bacteria in mice on 

immune cell development. They found that both innate and adaptive immunity were impaired with the 

absence of commensals and that innate immune cells such as macrophages were unable to support 

antiviral host defense. They argue that the microbiota help to establish an activation threshold of the 

innate immune system and that is needed for antiviral immunity [142]. Additionally, commensal 

bacteria are reported to be able to shift the course of hematopoietic development and, thereby, affect 

the sensitivity toward allergic inflammation [143]. 

3.2. Reducing the Risk of Chronic Diseases and Conditions: Prevention and Proactive Strategies 

Not surprisingly, prevention of chronic diseases by keeping people out of harm’s way of 

environmental hazards has been emphasized as the most effective solution to the ongoing crisis [144]. 

In a recent review, Sears and Genius [145] describe the public health process for addressing chronic 

diseases that can include risk recognition and chemical assessment then exposure reduction, 

remediation, monitoring, and finally, avoidance. One of the reasons to focus on avoiding problems 

early in life is the previously discussed interlinked patterns of chronic diseases. Once an individual 

receives an initial diagnosis of a chronic disease or condition (often during childhood), the probability 

is that additional chronic diseases will emerge later in that individual’s life [73]. Therefore, prevention 

can be viewed as not simply reducing the risk of one chronic disease in an individual but rather of 

multiple debilitating conditions over the course of a lifetime.  

However, where the current paradigm leads is not simply toward prevention of environmental 

insult. Instead, there is a broader focus on the Completed Self as the best indicator for a lifetime of 

optimized health. This broader focus would include both: (1) protection of host self-recognition and 

defenses (i.e., the immune system) across generations and (2) proactive strategies to ensure that 

newborns are able to incorporate their microbiome in a complete, efficient and timely manner. 
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Individuals and their specific tailored-microbiological components will vary. However, it seems likely 

that measures reflecting the status of human superorganism formation will be on the horizon and can 

be used to guide a holistic approach to children’s health 

4. Conclusions  

We discussed the utility of an immunologically-defined sign, formation of the Completed Self or 

human superorganism, whose integrity is essential for a healthful life. Three major components affect 

the formation and integrity of this sign: useful epigenetic programming, effective immune 

development, and complete microbiota acquisition. Because the Completed Self needs to form in the 

neonate, prenatal and perinatal protection of this process is paramount to reduce the risk of chronic 

diseases, lower healthcare costs and improve quality of life. 
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