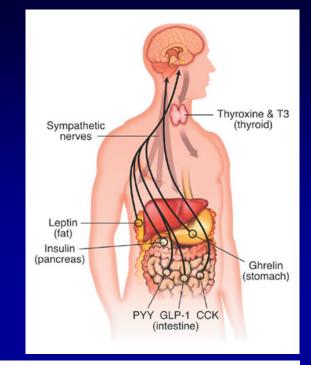
Endocrine Disrupters as Obesogens

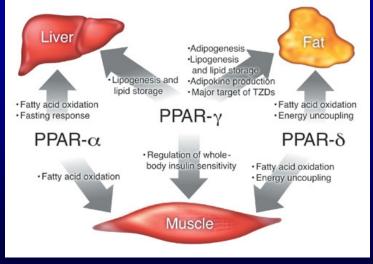
Is the environment making us fat?

Bruce Blumberg, Ph.D.

Department of Developmental and Cell Biology
Department of Pharmaceutical Sciences
Developmental Biology Center
Institute for Genomics and Bioinformatics
University of California, Irvine

The Worldwide Obesity Epidemic

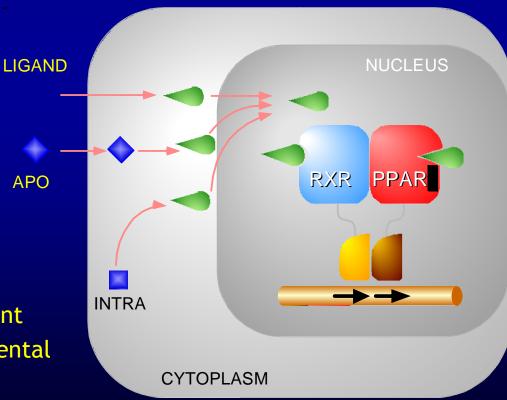

- 60 million people in the US are clinically obese
 - >30% above "ideal" body weight
- Obesity accounts for 8% of healthcare costs in Western countries
 - \$75 billion annually in US (2005)
- Obesity is associated with "metabolic syndrome" -> type 2 diabetes and cardiovascular disease
 - Central (abdominal obesity)
 - Atherogenic dyslipidemia (high triglycerides, high LDL, low HDL)
 - Hypertension
 - Insulin resistance
 - Prothrombotic state
 - Pro-inflammatory state (elevated CRP)


How does obesity occur ?

- Prevailing wisdom "couch potato syndrome"
 - Positive energy balance, i.e., too much food, too little exercise
- Other factors ?
 - Stress (elevated glucocorticoids)
 - Inadequate sleep (stress?)
 - "Thrifty" genes which evolved to make the most of scarce calories
 - Viruses, SNPs
- What about role of prenatal nutrition or in utero experience?
 - Maternal smoking decreases birth weight and increases obesity
- What about the role of industrial chemicals in rise of obesity?
 - Baillie-Hamilton (2002) postulated a role for chemical toxins
 - obesity epidemic roughly correlates with a marked increase in the use of chemicals (plastics, pesticides, etc.)
 - Many chemicals have effects on the endocrine system

Hormonal control of weight

- Hormonal control of appetite and metabolism
 - Leptin, resistin adiponectin ghrelin are key players
 - Leptin, adiponectin, resistin adipocytes
 - Grehlin stomach
 - Thyroid hormone/receptor
 - Sets basal metabolic rate
- Hormonal control of fat cell development and lipid balance
 - Regulated through nuclear hormone receptors RXR, PPARγ
 - PPARγ master regulator of fat cell development
 - increased fat cell differentiation
 - Increased fat storage in existing cells
 - Increased insulin sensitivity



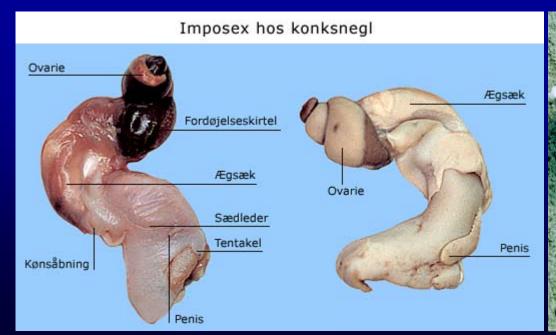
From Nature Medicine 10, 355 - 361 (2004)

Nuclear Receptors - A Large Family of Ligand Modulated Transcription Factors

- Bind to specific DNA targets <u>Hormone Response Elements</u>
 - Most are activators
 - Some constitutive
 - Few inactivate
- Ligands are small lipophilic molecules that freely enter cells
 - Diffuse from source
 & penetrate to a target
- Respond to low levels of hormone
 - Parts per billion levels
 - Regulation of levels is important
 - Can be disrupted by environmental contaminants

Endocrine Disrupting Chemicals (EDCs)

- <u>Endocrine disrupter</u> a compound that mimics or blocks the action of endocrine hormones, either directly or indirectly
- Often persistent pollutants or dietary components
- Disturb development, physiology and homeostasis
- Frequently act through nuclear hormone receptors
 - Environmental estrogens
 - Anti-androgens
 - Anti-thyroid
- Are disturbances in endocrine signaling pathways involved in adipogenesis and obesity ?

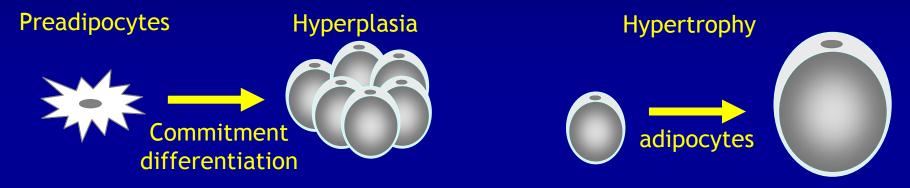

The Obesogen Hypothesis

- *Obesogens* chemicals that inappropriately stimulate adipogenesis and fat storage, exist and contribute to obesity epidemic
- Pre- and postnatal exposure to environmental estrogens (ER) increases weight
 - DES, genistein
- Thiazolidinedione anti-diabetic drugs (PPARγ)
 - Increase fat storage and fat cell size at all ages in humans
 - Reduce insulin resistance in muscle but increases obesity which exacerbates diabetes
- Several compounds cause adipocyte differentiation in vitro (PPAR γ)
 - Organotins, phthalates, BPA, PFOA, alkylphenols,
- Urinary phthalates correlate with waist diameter and insulin resistance in humans

Endocrine disruption by organotins

- Tributyltin -> causes imposex in molluscs
 - Imposition of male sex characteristics on female mollusks
- Impairs shell development in bivalve mollusks
- Sex reverses fishes (genetically female flounder and zebrafish -> males)

How do organotins cause endocrine disruption?


- How do organotins cause sex-reversal in mollusks and fishes?
 - Direct inhibition of aromatase (CYP19) activity (µM concentrations)
 - Inhibition of testosterone storage
- Transcriptional effects on aromatase expression
 - CYP19 in human ovarian granulosa cells is sensitive to inhibition by TBT, RXR- and PPARγ-specific ligands
- TBT alters sex determination typically female -> male
 - TBT effects are seen at nM doses and below
 - Sex determination requires sex steroids at critical times
 - Sex steroids act through nuclear receptors
- *Hypothesis TBT* alters the activity of one or more nuclear receptors, thereby causing endocrine disruption
 - Test nuclear receptors for activation or inhibition by organotins
 - Expect effect on steroid receptor activity

What is the effect of TBT on hormone receptors?

- TBT did not affect activity of sex steroid receptors at all
- TBT binds to and activates RXR-PPARγ with high affinity
 - TBT exposure causes RXR-PPARy target genes to be expressed
 - Activation of RXR-PPARγ converts susceptible cultured cells into fat cells
- Prenatal TBT exposure predisposes animals to become obese
 - Exposed animals were about 15% heavier despite normal diet and exercise
 - Metabolism has been altered

How does TBT exposure cause weight gain?

- Changes in the hormonal control of appetite and satiety?
- Altered ability of adipocytes to process and store lipids?
- Increased number of adipocytes or pre-adipocytes?

- Mesenchymal stem cells (MSCs) (now called multipotent stromal cells) precursors to many lineages including bone, cartilage, and adipose.
 - MSCs differentiate into adipocytes following rosiglitazone exposure
 - MSCs may (or may not) home to adipose depots after induction
- TBT induces cultured MSCs to become adipocytes
 - Effects of TBT on human obesity likely to be via MSCs

Obesogens- Just the Tip of the Iceberg ?Tributyl TinEstradiolGenisteinOrganophosphate
pesticidesPhthalates
PFOADES
Bisphenol ANicotinePCBs ?
PBDEs?

What don't we know yet?

- Body burdens in population
- Molecular targets of action beyond RXR-PPARy
- Critical windows of exposure
- How does prenatal exposure alter adult phenotype ?
- Is the prenatal reprogramming epigenetic?

Take Home Messages

- Diet and exercise are insufficient to explain obesity epidemic
- Obesogens inappropriately stimulate adipogenesis and fat storage
 - Environmental contaminants
 - TBT, environmental estrogens (BPA, DEHP), PFOA
 - Prescription drugs
 - Thiazolidinedione anti-diabetic drugs (Actos, Avandia)
 - Atypical antipsychotics (olanzapine)
 - Anti-depressants (tricyclics, SSRIs)
- Prenatal obesogen exposure reprograms the metabolism of exposed animals, predisposing them to obesity.
 - Likely to be epigenetic
- Obesogen exposure targets multiple cellular pathways, some of which involve nuclear receptors.